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Development of robust analytical procedures is critical when using hyperspectral imaging technology
in food technology and agriculture. This study used near-isogenic inbred corn lines to address two
basic questions: (1) To what extent is classification accuracy increased by grinding maize kernels?
(2) Can the classification accuracy of two near-isogenic inbred lines be increased by using a spectral
filter to classify only certain hyperspectral profiles from each image cube? Whole kernels and ground
kernels in two particle intervals, 0.250-0.354 mm (size 1) and 0.354-0.841 mm (size 2), were
examined. Spectral profiles acquired from ground kernels had higher spectral repeatability than data
collected from whole kernels. The classification error of discriminant functions from whole kernels
was >3 times lower than that of size 1 ground particles. Applying a spectral filter to input data had
negligible effect on classifications of hyperspectral profiles from whole kernels and size 2 ground
particles, but for size 1 ground particles a considerable increase in accuracy was observed.
Independent validation confirmed that distinction between wild type and mutant inbred maize lines
could be conducted with >80% accuracy after the proposed spectral filter had been applied to
hyperspectral profiles of size 1 ground particles. A combination of discriminant analysis and regression
analysis could be used to accurately predict mixture ratios of the two inbred lines. The use of spectral
filtering to increase the level of spectral repeatability and the use of hyperspectral imaging technology
in large-scale commercial operations are discussed.
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INTRODUCTION

With growing interest in applications of ground-based remote
sensing in food technologies and agriculture, it is important to
both highlight the limitations of spectral-based analyses and
develop robust analytical methodologies. There are several
important challenges associated with spectral-based analyses of
food/agricultural products. For instance, to what extent is it
possible to reduce shape effects (variation in projection angle)
in the classification of reflectance profiles acquired from target
objects, with distinct three-dimensional structures, such as folded
crop leaves or whole cereal grains [i.e., hard red wheat types
(1) or cereal grain breeder selection of seeds on the basis of
protein levels (2)]? Second, it is important to develop analytical
methodology that not only shows high performance in a research

environment but also can be implemented on larger commercial
scales. That is, near-infrared (NIR) technology has been used
widely and with high accuracy in studies of individual grain
kernels (3-7). There are several advantages of conducting
analyses on a single-kernel level as kernels can be placed in an
integrated sphere or a specially designed box (8) to homogenize
the distribution of light and therefore eliminate distortion of
spectral profiles due to projection angles. Delwiche (9) placed
each kernel crease-side down to reduce the shape effect of target
objects. Placing single kernels in a consistent way before spectral
data are acquired will obviously reduce possible shape effects,
but it also means much higher handling/processing time and
therefore restricts the use of this approach on a larger com-
mercial scale.

Throughout this paper, the term “spectral repeatability” is
used to describe the level of noise or spectral variance caused
by the three-dimensional structure of target objects. As pointed
out by Peleg et al. (10), low spatial and spectral repeatability is
a common problem in airborne remote sensing, but it may also
cause problems/challenges in ground-based remote sensing.
From Figure 1 it is seen that when using a spatial resolution
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that allows acquisition of many pixels from a single kernel, the
shape of hyperspectral profiles is highly dependent on where
on the kernel the profile was acquired from. In Figure 1a, about
112,000 pixels covered the entire maize kernel, and each color
dot represents about 300 pixels. The highest variation among
average spectral profiles (Figure 1b) was seen at 456 nm, in
which the highest difference [(maximum - minimum)/(aver-
age)] among the four hyperspectral profiles was 31%. Some of
that variation is associated with difference in chemical composi-
tion within a single kernel, but most of the variability is
attributed to the three-dimensional shape of kernels, which
determines the projection angle, and it causes a low level of
spectral repeatability. In many studies (i.e., refs 3, 4, 7, 9, and
11), authors average multiple scans of the same object (typically
16-32 scans) to increase the spectral repeatability of input data.
Although this method certainly increases the spectral repeat-
ability, a disadvantage appears to be that each object has to be
scanned multiple times, which may be a considerable constraint
for large-scale operations. Additionally, averaging of pixels
makes it more challenging to distinguish between two or more
classes if they are mixed in the same sample. For instance, in
the classification of hard red winter and hard red spring wheat
classes (1), classifications based on the average of 16 scans do
not provide the end-user with information about the possibility
of samples being mixed and, if so, in what ratio. This aspect is
not only important for classifications on a nominal scale but is
also relevant when, for instance, moisture and/or protein contents
are estimated on a large scale.

An alternative to averaging multiple scans of the same object
would be to apply a user-defined spectral filter before input data
are acquired and to classify each hyperspectral profile separately.
That is, hyperspectral imaging can be used to acquire hundreds
of spectral profiles from the surface of each target object, but
instead of including hyperspectral profiles from all pixels, one
could use reflectance value intervals in certain bands as cut

levels and only include hyperspectral profiles within predeter-
mined intervals. Applying such a spectral filter would (1) likely
increase the spectral repeatability of the input data, (2) not
require any averaging, and (3) retain important spatial informa-
tion (where within the same the given hyperspectral profile was
collected) associated with each hyperspectral profile.

This analysis is based on analysis of maize kernels from
inbred wild type lines and from near-isogenic (NIL) mutant
lines (12, 13). We used this maize material to address two basic
questions: (1) To what extent is classification accuracy increased
by grinding maize kernels? (2) Can the classification accuracy
of two near-isogenic inbred lines be increased by using a spectral
filter to classify only certain hyperspectral profiles from each
image cube? The reasoning behind using inbred maize lines
for testing the proposed analysis was that (1) the round shape
of maize kernels allows for acquisition of hyperspectral profiles
at many projection angles, (2) spectral analysis is widely used
in research on the quality of cereals, and (3) paired neo-isogenic
inbred lines (wild type versus mutant) comprise subtle differ-
ences and would therefore be a challenging model system for
testing an improved classification methodology. The analytical
approach, based on discriminant analysis, is relevant to most
food quality control procedures based on spectral analysis,
including analyses of fruits and vegetables (14-16) and meat
quality (17), in which dichotomous (i.e., reject vs accept)
classification is used.

MATERIALS AND METHODS

Target Objects. Maize kernels used in this study were obtained from
a well-established, true inbred line, FR2128B and its near-isogenic mutant
line lox3-4. Maize plants of both inbred lines were cultivated under field
conditions and backcrossed to the inbred line FR2128B for 4-5
generations (12, 13). “Wild type” refers to the original FR2128B line, and
“mutant” refers to a line in which a 9-lipoxygenase gene was disrupted by
an insertion of a Mutator transposable element in the coding sequence of
the ZmLOX3 gene (12). Genetically, the homozygous mutant individuals
are near-isogenic to the recurrent parent, FR2128B line (they share 97.5%
of the genome) and are suitable for assessing the effect of the LOX gene
knockouts on the plant physiology. No visible defects in weight, size, or
other morphological traits of the mutant kernels were detected compared
to the wild types (13). Kernels of both inbred lines were used either as
whole kernels or ground with a cereal grinder (Back to Basics, West Bend,
WI) and subsequently sieved into two particle size ranges: 0.250-0.354
mm (size 1) and 0.354-0.841 mm (size 2). Particle mean sizes within
each range were unknown. For initial classification, 10 images were
collected from each combination of inbred line and level of processing
(whole kernels and sizes 1 and 2). In addition, five images were collected
from each combination of inbred line and level of processing for validation
of classification procedures. Whole maize kernels and/or processed kernels
consisted of 5 g samples placed in 5 cm diameter plastic Petri dishes.

Spectral Image Collection. We used a hyperspectral spectral camera
(PIKA II, Resonon Inc., Bozeman, MT), which collects 160 bands in
the range from 435 to 769 nm. The objective lens had a 35 mm focal
length (maximum aperture of F1.4) and was optimized for the visible
and NIR spectra. The main specifications of the spectral camera are as
follows: interface, Firewire (IEEE 1394b); output, digital (12 bit); 160
bands (spectral) by 640 pixels (spatial); angular field of view, 7 degrees;
and spectral resolution, <3 nm. Spectral image cubes were collected
under controlled light conditions with a ring light mounted 25 cm above
target objects, whereas the hyperspectral camera was mounted 45 cm
above target objects. Ambient climate conditions were between 19-22
°C and between 30-40% relative humidity. A piece of white Teflon
was used for white calibration, and “relative reflectance” refers to
proportional reflectance compared to that obtained from Teflon.
Consequently, relative reflectance values ranged from 0 to 1. Each
hyperspectral image cube consisted of 250 frames (160,000 pixels) and
the spectral with a pixel size of about 0.12 mm2.

Figure 1. Example of how hyperspectral profiles collected from a single
maize kernel are dependent upon projection angles. Each colored dot on
the maize kernel (a) represents about 300 pixels, and the respective
colored profiles are shown (b).
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Data Analysis. ENVI 4.0 for Windows (Research Systems Inc.,
Boulder, CO) was used to collect a random sample of 500 pixels from
each hyperspectral image cube, which was exported into PC-SAS 9.0
(SAS Institute, Cary, NC) for statistical analysis. For each maize
material, the complete input data file consisted of 10000 hyperspectral
profiles (5000 from mutant type and 5000 from wild type). The first
part of the analysis concerned generation of a spectral filter with upper
and lower reflectance cut levels in the single spectral band that
contributed the most to the separation of wild type and mutant. The
input file for each maize material was analyzed in a stepwise
discriminant analysis (PROC STEPDISC in SAS) to determine the
spectral band that contributed the most to the classification of inbred
lines. Subsequently, PROC DISCRIM in SAS with the cross-validation
option was used to determine the classification error rate (percentage
of misclassified hyperspectral profiles). As part of the accuracy
assessment, we used the spectral band that contributed the most to each
discriminant function and generated frequency distribution curves of
correctly or incorrectly classified hyperspectral profiles. In other words,
it was determined whether relative reflectance values in a single spectral
band could be used as a spectral filter to reduce the error rate. In the
second part of the analysis, a new discriminant analysis was conducted
on the basis of a reduced input file in which hyperspectral profiles with
reflectance values outside a certain range in a single spectral band had
been excluded.

Validation. Two kinds of validation were conducted for size 1
ground particles only, as the classification accuracy for whole kernels
and size 2 ground particles was considered to be too low. First, 500
hyperspectral profiles were collected randomly from 10 image cubes
of both wild type and mutant type maize. Discriminant functions
generated on the basis of the reduced input data set of size 1 ground
particles were validated with each of the 20 times 500 hyperspectral
profiles. One-way ANOVA was used to compare mean classification
accuracies for wild type and mutant inbred lines. In a second validation
of hyperspectral profiles from size 1 ground particles, material of wild
type and mutant type maize was mixed in known ratios (1:9, 1:4, 1:1,
4:1, and 9:1) and analyzed on the basis of the reduced input data set of
size 1 ground particles. We collected 10 hyperspectral images for each
of the five ratios, and random samples of 1000 hyperspectral profiles
from each image were analyzed using the discriminant function
generated on the basis of the reduced input data set of size 1 ground
particles. The following regression model was used to analyze the
relationship between actual (x) and predicted percentage [F(x)] in
mixtures of size 1 ground materials:

F(x)) ax+ bx2 + c (1)

a, b, and c are fitted coefficients.

RESULTS

Input Data. There was a clear difference in hyperspectral
profiles from whole kernels compared to processed kernels, and
sieving the ground material into two particle size categories also
had considerable effect on average hyperspectral profiles (Figure
2). With very little genetic difference between inbred lines, it
was not surprising that average spectral profiles from whole
kernels and from ground kernels were very similar in pairwise
comparisons of the two inbred lines. However, across the
examined spectrum, relative reflectance values were consistently
higher from wild types compared to mutants, and as much as
14% difference in average reflectance curves was observed from
470 to 490 nm in size 1 ground particles. For comparison, the
highest differences in average reflectance curves from whole
kernels and size 2 ground particles were 7 and 10%, respectively.

In the initial stepwise discrimination analyses of wild types
and mutants (N ) 10000), coefficients of determinations (R2

values) varied considerably among maize materials (0.141, 225,
and 0.529), and there was a positive relationship between size
of objects and classification error rate (Table 1). It was
noticeable that size 1 ground particles were classified with about

3.5 times higher accuracy than whole kernels (Table 1). In
addition, there was a negative relationship between number of
spectral bands that contributed significantly to discriminant
functions and classification error rate.

Development of the Spectral Filter. The initial stepwise
discrimination analyses showed that the spectral bands that
contributed the most to each classification of wild type versus
mutant were at 481 nm (whole kernels), 509 nm (size 2), and
505 nm (size 1). We generated frequency distributions curves
of relative reflectance values in these spectral bands for pixels
that were correctly and incorrectly classified (Figure 3). It was
seen that the rounded three-dimensional structure of whole
kernels meant that reflectance values at 481 nm varied consider-
ably with >1000 pixels in each reflectance interval between
0.05 and 0.40. As seen from Table 1, the overall classification
error rate was about 35%, and it varied between 30 and 36%
for the different reflectance intervals (Figure 3a). In the
classification of whole kernels, the highest number of correctly
classified pixels was found in the reflectance interval between
0.20 and 0.30 in which 1458 of the pixels (67%) in that
reflectance interval were correctly classified. Thus, a second
discriminant analysis was conducted in which only hyperspectral
profiles with relative reflectance values between 0.15 and 0.40
at 481 nm were included, which meant that about 49% of the
original hyperspectral profiles were included (N ) 4904). On
the basis of the reduced input file, the overall error rate was
reduced to 32%. The error rate of included hyperspectral profiles
was only slightly lower than for those that were excluded, so
the spectral filter had only negligible effect on the classification
error rate.

In size 2 ground particles, hyperspectral profiles had relative
reflectance values at 509 mm between 0.20 and 0.70, and about
80% of the 10000 hyperspectral profiles had relative reflectance
values in between 0.30 and 0.50 (Figure 3b). Thus, grinding
maize kernels considerably reduced the overall variance of

Figure 2. Average hyperspectral profiles (N ) 5000) from wild type and
mutant inbred lines of whole kernels and sizes 1 (0.250-0.354 mm) and
2 (0.841-0.354 mm) of ground maize.

Table 1. Discriminant Analyses of Whole and Ground Maize Kernels

full analysis (N ) 10000) reduced analysis

target object
R 2

value bands
error
(%) N

R 2

value bands
error
(%)

whole kernels 0.141 52 34.5 4904 0.185 54 33.0
size 2

(0.841-0.354 mm)
0.225 90 28.9 5347 0.225 73 29.6

size 1
(0.250-0.354 mm)

0.529 112 14.6 3302 0.686 73 9.9
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hyperspectral profiles, and the error rate within the different
reflectance intervals was between 18 and 30%. Highest inac-
curacy of the classification of wild type and mutants occurred
among hyperspectral profiles with relative reflectance values at
509 mm between 0.40 and 0.50. Consequently, a second
discriminant analysis was conducted in which these hyperspec-
tral profiles were excluded (N ) 5347). Using the reduced input
file caused a slight increase in error rate from 29 to 30%, so
the proposed filtering of input data did not increase the
classification accuracy. On the basis of Figure 3b, one approach
to increase the classification accuracy would be to exclude all
hyperspectral profiles with relative reflectance values at 509 nm
between 0.30 and 0.60, as the classification accuracy of
hyperspectral profiles outside this range was very high (>76%).

However, only very few pixels (660 of 10000 pixels) were found
within those relative reflection ranges, and it was considered to
be inappropriate to exclude about 95% of hyperspectral profiles
in the input data file.

In size 1 ground particles, all relative reflectance values at
505 nm fell within three reflectance intervals 0.40-0.70. The
overall classification error rate of all 10000 pixels was 15%
(Table 1), but it was about 10% higher for hyperspectral profiles
with relative reflectance values at 505 nm between 0.50 and
0.60 than outside this reflectance interval (Figure 3c). Conse-
quently, a second discriminant analysis was conducted in which
hyperspectral profiles with relative reflectance values at 505 nm
between 0.50 and 0.60 were excluded (N ) 3302). Using the
reduced input file reduced the error rate from 15 to 10%, which
suggested that the combination of grinding maize kernels,
analyzing only particles ranging from 0.250 to 0.354 mm in
diameter, and applying the proposed spectral filter reduced an
already low classification error.

Validation. The first part of the validation showed that, on
the basis of mean comparison, there was a highly significant
difference in classification accuracy of size 1 ground material
of the two inbred lines (F10 value ) 48.9, P < 0.01), as input
data from images of wild type maize were classified with 80.8%
((1.9 SE) accuracy and those from mutant maize were classified
with about 95.9% ((0.7 SE) accuracy. It is important to mention
that application of the spectral filter reduced input data by
50-70% and that mainly hyperspectral profiles from wild type
material were excluded by the spectral filter. In the second part
of the validation, it was shown that the proportion of mutant
maize in mixed samples was consistently overestimated, but
with about 20% points when 0-50% of the sample consisted
of mutant material with size 1 particle size (Figure 4).
Regression analyses of both inbred line provided highly
significant curve fits (adjusted R2 values > 0.96, P values <
0.001). Low (<25%) concentration of wild type maize was
predicted fairly accurately, but concentrations >25% were
generally underestimated. Despite the considerable level of
inaccuracy, it is important to remember that the classification
accuracy of wild type material only with size 1 particle was
about 80%, so the main conclusions on the basis of Figure 4
were that (1) mixing of the two inbred lines did not seem to

Figure 3. Reflectance values in a single band were examined for whole
kernels (a, top) (481 nm) and size 2 (b, middle) (509 nm), and size 1 (c,
bottom) (505 nm) ground maize. In each band, we examined the range
of reflectance values, and bars denote the numbers of correctly (black)
and incorrectly (gray) classified profiles. The classification error denotes
the percentage of correctly classified profiles of the total number of profiles.

Figure 4. Size 1 (0.250-0.354 mm) ground maize from mutant and wild
type was mixed in seven different ratios and used to validate the
discriminant functions for both mutant and wild type. For each mixture
ratio, we conducted 10 replications. Regression analysis of wild type (eq
1): adjusted R2 value ) 0.97, F value ) 96.9, P value < 0.001, a )
-0.0014, b ) 0.0001, c ) 0.096. Regression analysis of mutant (eq 1):
adjusted R2 value ) 0.97, F value ) 96.9, P value < 0.001, a ) -0.016,
b ) -0.0001, c ) 0.221.
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affect the classification accuracy and (2) it would be possible
to obtain quite accurate predictions of actual mixture concentra-
tions by using simple regression analyses (eq 1) as calibration
curve for predictions based on discriminant analysis.

DISCUSSION

We analyzed whole and ground maize kernels in small Petri
dishes, but the same approach could have been used to analyze
large volumes of grain, as the only difference would be to collect
larger image cubes. In addition, the same analytical approach
could be applied to the classification of most other food products.
Hyperspectral images were collected with 15 frames per second
with a pixel size of about 0.12 mm2, but with a more powerful
computer, the same setup could collect the hyperspectral images
5-10 times faster. In other words, the experimental setup used
here is directly applicable to most commercial operations in
which hyperspectral imagery may be used in quality control.
However, it is important to mention that the analysis was
conducted using a number of software packages and that this
process would have to be programmed and integrated into one
program for it to be used in a commercial setting. We showed
that (1) spectral repeatability was negatively associated with
size of target objects (whole kernels compared to ground kernels)
as grinding and sifting reduced reflectance value ranges within
individual bands; (2) R2 values of the discriminant function from
whole kernels were about 3 times lower than that of size 1
ground particles, so also the error rate of stepwise discriminant
analyses was negatively associated with size of target objects;
(3) applying a spectral filter to input data had negligible effect
on classifications of hyperspectral profiles from whole kernels
and size 2 ground particles, but for size 1 ground particles a
considerable increase in accuracy was observed, (4) independent
validation confirmed that distinction between wild type and
mutant inbred maize lines could be conducted with >80%
accuracy after the proposed spectral filter had been applied to
hyperspectral profiles of size 1 ground particles; and (5) a
combination of discriminant analysis and regression analysis
could be used to accurately predict mixture ratios of the two
inbred lines.

Classification Accuracy and Spectral Repeatability. Obvi-
ously, the advantages of using spectroscopy in quality control
are first and foremost dependent upon the accuracy level of clas-
sification procedures. Published studies on classification of grain
characteristics (1-4, 9, 11), fruit and vegetable qualities (14-16),
and meat characteristics (17) generally show classification
accuracy levels of 70-95%. Many authors acknowledge
concerns about spectral repeatability (i.e., ref 18), but there are
only few suggestions as to how to overcome this problem.
Although Peleg et al. (10) exclusively discussed spatial and
spectral repeatability problems associated with airborne imaging,
it seems reasonable to broaden the concern even further, as a
low level of repeatability may also be found among spectral
profiles obtained from points at close proximity (millimeters
apart) on a fruit or grain kernel. Recently, Nansen et al. (19)
showed that variogram analysis may be used in the analysis of
hyperspectral data and that emphasis on the spatial structure of
hyperspectral image data sets may reduce the sensitivity to both
variation in geographic scale and to inherent variation among
different image cubes.

Other Concerns. Apart from accuracy, there are other and
more practical concerns that become very important when the
objective is to develop analytical procedures to be used on a
large commercial scale. “Down time”, meaning the time

machinery and/or workers have to wait on quality control results
before proceeding, is enormously important, so it is critical that
analyses are completed in a timely fashion and preferably “in-
house” to avoid logistical problems associated with mailing of
samples to special laboratories or institutes. But clearly, the most
important factor, apart from accuracy, is the ability to process
large amounts of samples, because thorough quality control is
typically implemented to find the famous “needle in the
haystack”. Most commercial operations run with very low defect
levels (in this context, defects may be considered food products
with any unwanted characteristics), and the distribution of such
defects may be very aggregated, so many samples have to be
analyzed to estimate the overall quality. Pasikatan and Dowell
(2) used a simple band ratio (920/1660 nm) and a high volume
color sorter (40 kg/h) to automatically separate individual kernels
into high (>12.5%) or low (11.5%) protein content. Pasikatan
and Dowell (2) showed that accurate classification of an
experimental mix of 50:50 high- and low-protein wheat would
require more than five resortings of a given wheat sample, and
the authors found that several factors other than protein content
influenced the wheat classification.

It was within this context that we decided to explore the
option of enhancing the accuracy of a fairly standard classifica-
tion approach (discriminant analysis) by developing a simple
spectral filter to increase spectral repeatability of the input
spectra and thereby obtain more accurate separation of classes.
Generally speaking, the problem of low spectral repeatability
of input profiles is similar to working with a photograph out of
focus: you can improve it to some extent, but the best thing
would have been to focus the camera properly in the first place!
The approach described in this study is based on one important
assumptionsthat it is not necessary to classify all pixels. That
is, it is inherently assumed that relative reflectance values within
each spectral band are distributed in a somewhat consistent
fashion, and the second part of the validation was included to
account for that. We showed that there was a nonlinear
relationship between predictions from discriminant analysis and
actual mixture ratios. Despite the nonlinearity of this relation-
ship, fairly simple regression analysis could be used to correct/
calibrate the predictions.

Whole or Ground Maize Material. Many studies, including
Pasikatan and Dowell (2) and Delwiche (9), examined whole
kernels and the main justifications are that processing (i.e., grinding
and sifting) is (1) labor intensive, which may be an important
constraint in large-scale operations, and (2) destructive, which is a
critical limitation, for instance, in the selection of cereal breeding
material. In this study, the classification accuracy of whole kernels
was about 68%, whereas it was >80% of size 1 ground material.
It is certainly possible that application of a more selective spectral
filter could have improved the classification accuracy, but that
would have reduced the number of hyperspectral profiles below
what was considered to be acceptable in the analyses, but with
larger image cubes that would certainly be an option. However,
we found a clear trend with classification accuracy negatively
correlated with target object size.

Concluding Remarks. Although classification accuracies of
81 and 96% for wild type and mutant, respectively, may not be
acceptable in some quality control procedures, it is important
to remember that we used maize material in which there was
only <3% genetic difference between the two classes. The level
of classification error would likely have been considerably lower
if more distinctly different materials had been compared. In
addition, it may be possible to consider the proposed procedure
a first screening step to be followed by more rigorous analyses
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(i.e., NIR spectroscopy) in a subsequent step. Application of
the spectral filter reduced input data by 50-70%, which means
that at least twice as much data can be classified with the same
amount of computer power (half of the input data was discarded
in the preprocessing stage), so spectral filtering increased the
ability to analyze large samples. From the analyses of sample
mixtures, we showed that there was a clear relationship between
classification accuracy and mixture and that simple curve fits
could be used to calibrate predicted mixtures from discriminant
analysis.
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